Anti-HSP60 Antibody

Rabbit Anti-Human HSP60 Polyclonal

Catalog No. SPC-105

5 out of 5 based on 1 customer rating
Species Reactivity Hu, Ms, Rt, Bv, Dg, Ck, Rb, Hm
Applications WB IHC ICC/IF FCM IP
SKU: SPC-105 Categories: ,

Clear
SPC-105_Hsp60_Antibody_ICC-IF_Human_Heat-Shocked-HeLa-Cells_100x_Composite.png
Rabbit Anti-HSP60 Antibody used in Immunohistochemistry (IHC) on Adrenal (SPC-105)Rabbit Anti-HSP60 Antibody used in Western blot (WB) on Human, Dog, Mouse SKBR3, MDCK, and MEF cell line lysates (SPC-105)Rabbit Anti-Hsp60 Antibody used in Immunocytochemistry/Immunofluorescence (ICC/IF) on Human Heat Shocked HeLa Cells (SPC-105)
Product Name HSP60 Antibody
Description

Rabbit Anti-Human HSP60 Polyclonal

Species Reactivity Bovine, Chicken, Dog, Hamster, Human, Mouse, Rabbit, Rat
Applications WB, IHC, ICC/IF, IP, ELISA
Antibody Dilution WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen Human HSP60 produced through recombinant DNA methods in E.coli
Concentration 1 mg/ml
Conjugates APC, ATTO 390, ATTO 488, ATTO 594, Biotin, FITC, HRP, PerCP, RPE, Unconjugated
Dylight 488
Overview:

  • High fluorescence yield
  • High photostability
  • Less pH-sensitive
  • Excellent batch-to-batch reproducibility
  • Stringently QC tested
  • Molecular weight: 1011 g/mol

Dylight 488 Datasheet

Dylight 488 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 493 nm

λem = 518 nm

εmax = 7.0×104

Laser = 488 nm

 

APC/Cy7
Overview:

  • High quantum yield
  • Excellent batch-to-batch reproducibility
  • Stringently QC tested

APC-Cy7 Datasheet

 

ACP-Cy7 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 652 nm

λem = 790 nm

Laser = 594 or 633 nm

 

 

  Dylight 350
Overview:

  • High fluorescence intensity
  • High photostability
  • Less pH-sensitive
  • Excellent solubility in water
  • Stringently QC tested
  • Excellent batch-to-batch reproducibility
  • Molecular weight: 874 g/mol

Dylight 350 Datasheet

Dylight 350 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 353 nm

λem = 432 nm

εmax = 1.5×104

 

 

  Dylight 405
Overview:

  • High fluorescence intensity
  • High photostability
  • Less pH-sensitive
  • Excellent batch-to-batch reproducibility
  • Stringently QC tested
  • Molecular weight: 793 g/mol

Dylight 405 Datasheet

Dylight 405 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 400 nm

λem = 420 nm

εmax = 3.0×104

Laser = 405 nm

 

Dylight 594
Overview:

  • High fluorescence yield
  • High photostability
  • Less pH-sensitive
  • Excellent batch-to-batch reproducibility
  • Stringently QC tested
  • Molecular weight: 1078 g/mol

Dylight 594 Datasheet

Dylight 594 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 593 nm

λem = 618 nm

εmax = 8.0×104

Laser = 526 nm

 

 Dylight 633
Overview:

  • High fluorescence yield
  • High photostability
  • Less pH-sensitive
  • Excellent batch-to-batch reproducibility
  • Stringently QC tested
  • Molecular weight: 1066 g/mol

Dylight 633 Datasheet

Dylight 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 638 nm

λem = 658 nm

εmax = 1.7×105

Laser = 633 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

Field of Use Not for use in humans. Not for use in diagnostics or therapeutics. For in vitro research use only.

Properties

Storage Buffer PBS, 50% glycerol, 0.09% sodium azide *Storage buffer may change when conjugated
Storage Temperature -20ºC, Conjugated antibodies should be stored according to the product label
Shipping Temperature Blue Ice or 4ºC
Purification Protein A purified
Clonality Polyclonal
Specificity Detects ~60kDa.
Cite This Product StressMarq Biosciences Cat# SPC-105, RRID: AB_10807230
Certificate of Analysis 1 µg/ml of SPC-105 was sufficient for detection of HSP60 in 20 µg of heat shocked HeLa cell lysate by colorimetric immunoblot analysis using goat anti-mouse IgG as the secondary antibody.

Biological Description

Alternative Names CPN60 Antibody, GROEL Antibody, HLD4 Antibody, HSP 60 Antibody, HSP65 Antibody, HSPD1 Antibody, HuCHA60 Antibody, SPG 13 Antibody
Research Areas Cancer, Cell Signaling, Chaperone Proteins, Heat Shock, Organelle Markers, Protein Trafficking, Tags and Cell Markers
Cellular Localization Mitochondrion, Mitochondrion Matrix
Accession Number NP_002147.2
Gene ID 3329
Swiss Prot P10809
Scientific Background In both prokaryotic and eukaryotic cells, the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones. Members of the HSP60 family of heat shock proteins are some of the best characterized chaperones. HSP60, also known as Cpn60 or GroEl, is an abundant protein synthesized constitutively in the cell that is induced to a higher concentration after brief cell shock. It is present in many species and exhibits a remarkable sequence homology among various counterparts in bacteria, plants, and mammals with more than half of the residues identical between bacterial and mammalian HSP60 (1-3). Whereas mammalian HSP60 is localized within the mitochondria, plant HSP60, or otherwise known as Rubisco-binding protein, is located in plant chloroplasts. It has been indicated that these proteins carry out a very important biological function due to the fact that HSP60 is present in so many different species. The common characteristics of the HSP60s from the divergent species are i) high abundance, ii) induction with environmental stress such as heat shock, iii) homo-oligomeric structures of either 7 or 14 subunits which reversibly dissociate in the presence of Mg2+ and ATP, iv) ATPase activity and v) a role in folding and assembly of oligomeric protein structures (4). These similarities are supported by recent studies where the single-ring human mitochondrial homolog, HSP60 with its co-chaperonin, HSP10 were expressed in a E. coli strain, engineered so that the groE operon is under strict regulatory control. This study has demonstrated that expression of HSP60-HSP10 was able to carry out all essential in vivo functions of GroEL and its co-chaperonin, GroES (5). HSP60 has however been linked to a number of autoimmune diseases, as well as Alzheimer's, coronary artery diseases, MS, and diabetes (6-9).
References 1. Hartl, F.U. (1996) Nature 381: 571-579.
2. Bukau, B. and Horwich, A.L. (1998) Cell 92: 351-366.
3. Hartl, F.U. and Hayer-Hartl, M. (2002) Science 295: 1852- 1858.
4. Jindal, S., et al. (1989) Molecular and Cellular Biology 9: 2279-2283.
5. La Verda, D., et al (1999) Infect Dis. Obstet. Gynecol. 7: 64-71.
6. Itoh, H. et al. (2002) Eur. J. Biochem. 269: 5931-5938.
7. Gupta, S. and Knowlton, A.A. J. Cell Mol Med. 9: 51-58.
8. Deocaris, C.C. et al. (2006) Cell Stress Chaperones 11: 116-128.
9. Lai, H.C. et al. (2007) Am. J. Physiol. Endocrinol. Metab. 292: E292-E297.
10. Gao, Y.L., et al (1995) J. of Immunology 154: 3548-3556.
11. Neuer, A., et al (1997) European Society for Human Reproduction and Embryology 12(5):925-929.
12. Bason, C., et al (2003) Lancet 362(9400): 1971-1977.

Product Images

<p>Immunocytochemistry/Immunofluorescence analysis using Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105). Tissue: Heat Shocked Cervical cancer cell line (HeLa). Species: Human. Fixation: 2% Formaldehyde for 20 min at RT. Primary Antibody: Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105) at 1:100 for 12 hours at 4°C. Secondary Antibody: FITC Goat Anti-Rabbit (green) at 1:200 for 2 hours at RT. Counterstain: DAPI (blue) nuclear stain at 1:40000 for 2 hours at RT. Localization: Mitochondrion matrix. Magnification: 100x. (A) DAPI (blue) nuclear stain. (B) Anti-Hsp60 Antibody. (C) Composite. Heat Shocked at 42°C for 1h.</p>

Immunocytochemistry/Immunofluorescence analysis using Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105). Tissue: Heat Shocked Cervical cancer cell line (HeLa). Species: Human. Fixation: 2% Formaldehyde for 20 min at RT. Primary Antibody: Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105) at 1:100 for 12 hours at 4°C. Secondary Antibody: FITC Goat Anti-Rabbit (green) at 1:200 for 2 hours at RT. Counterstain: DAPI (blue) nuclear stain at 1:40000 for 2 hours at RT. Localization: Mitochondrion matrix. Magnification: 100x. (A) DAPI (blue) nuclear stain. (B) Anti-Hsp60 Antibody. (C) Composite. Heat Shocked at 42°C for 1h.

<p>Immunohistochemistry analysis using Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105). Tissue: Adrenal. Species: Human. Fixation: Formalin fixed paraffin-embedded. Primary Antibody: Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105).</p>

Immunohistochemistry analysis using Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105). Tissue: Adrenal. Species: Human. Fixation: Formalin fixed paraffin-embedded. Primary Antibody: Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105).

<p>Western blot analysis of Human, Dog, Mouse SKBR3, MDCK, and MEF cell line lysates showing detection of HSP60 protein using Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105). Lane 1: Recom. Human Hsp60 (100ng), Lane2, 3 and 4: SKBR3 lysate (human), MDCK lysate (dog) and MEF lysate (mouse) (al at 7.5ug). Primary Antibody: Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105) at 1:1000.</p>

Western blot analysis of Human, Dog, Mouse SKBR3, MDCK, and MEF cell line lysates showing detection of HSP60 protein using Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105). Lane 1: Recom. Human Hsp60 (100ng), Lane2, 3 and 4: SKBR3 lysate (human), MDCK lysate (dog) and MEF lysate (mouse) (al at 7.5ug). Primary Antibody: Rabbit Anti-HSP60 Polyclonal Antibody (SPC-105) at 1:1000.

<p>Immunocytochemistry/Immunofluorescence analysis using Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105). Tissue: Heat Shocked Cervical cancer cell line (HeLa). Species: Human. Fixation: 2% Formaldehyde for 20 min at RT. Primary Antibody: Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105) at 1:100 for 12 hours at 4°C. Secondary Antibody: APC Goat Anti-Rabbit (red) at 1:200 for 2 hours at RT. Counterstain: DAPI (blue) nuclear stain at 1:40000 for 2 hours at RT. Localization: Mitochondrion matrix. Magnification: 20x. (A) DAPI (blue) nuclear stain. (B) Anti-Hsp60 Antibody. (C) Composite. Heat Shocked at 42°C for 1h.</p>

Immunocytochemistry/Immunofluorescence analysis using Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105). Tissue: Heat Shocked Cervical cancer cell line (HeLa). Species: Human. Fixation: 2% Formaldehyde for 20 min at RT. Primary Antibody: Rabbit Anti-Hsp60 Polyclonal Antibody (SPC-105) at 1:100 for 12 hours at 4°C. Secondary Antibody: APC Goat Anti-Rabbit (red) at 1:200 for 2 hours at RT. Counterstain: DAPI (blue) nuclear stain at 1:40000 for 2 hours at RT. Localization: Mitochondrion matrix. Magnification: 20x. (A) DAPI (blue) nuclear stain. (B) Anti-Hsp60 Antibody. (C) Composite. Heat Shocked at 42°C for 1h.

Reviews

Reviews

  1. 5 out of 5

    :

    Based on validation through cited publications.

Add a review

Your email address will not be published. Required fields are marked *